Mastery Checkpoint 3: The Law of Exponents and Polynomials Toolkit

Law	Examples	
$x^{m} x^{n}=x^{m+n}$ for all x		
$\frac{x^{m}}{x^{n}}=x^{m} n$ for $x \neq 0$		
$\left(x^{m}\right)^{n}=x^{m n}$ for all x		
$x^{0}=1$ for $x \neq 0$		
$x^{1}=\frac{1}{x}$ for $x \neq 0$		
$x^{m / n}=\sqrt[n]{x^{m}}$ for $x \geq 0$		

	Expression	Generalization	Why is this true?
a.	$x^{25} \cdot x^{40}=?$	$x^{m} \cdot x^{n}=?$	
b.	$\frac{x^{36}}{x^{13}}=?$	$\frac{x^{m}}{x^{n}}=?$	
c.	$\left(x^{5}\right)^{12}=?$	$\left(x^{m}\right)^{n}=?$	
d.	$k^{-5}=?$	$x^{1}=\frac{1}{x}$	

- Changing forms

The line $-6 x+2 y=10$ is written in standard form: $\mathbf{a} x$ $+\mathbf{b} \boldsymbol{y}=\mathbf{c}$. Can you easily tell what the slope of the line is? $\mathrm{m}=$ \qquad It's starting value? $\mathrm{b}=$ \qquad
Solve for y
a. $-6 x+2 y=10$

Solve for x
b. $9 x-3 y=15$

One way to solve absolute value equations is to think about "looking inside" the absolute value. The "inside" must be positive or negative, so you should solve the equation both ways. For example, you could record your steps as shown below.

Solve the equation. Be sure to find all possible answers and check your solutions

$$
\text { a. }|9+3 x|=39
$$

The Distributive Property states that for any three terms a, b, and c that a gets multiplied by each term inside.

$$
a(b+c)=
$$

Examples: Multiply the following:

$$
2(x+4)
$$

$$
3 x(x-2 y+3)
$$

$$
(x+2)(x+4)
$$

If anequin (), his mean equation has parenthesis (), this means the first step could be multiplying. Multiply with the distributive property or generic rectangles to eliminate the (), then solve using "legal moves".

Ex: Solve for x :
Steps

$$
4-3(x+2)=19
$$

Check:

Is it true that $(x+9)^{2}=x^{2}+81 ?$

