\qquad
Unit 1 Basic Skills Toolkit

TAxes, Quadrants\& Coordinates

COORDINATES /ORDERED PAIR: (,)

Plot the points with the following coordinates:
A($4,-2$)
B ($-2,-5$)
C (0,3)
D(3, 0)

To add and subtract fractions \qquad $\frac{3}{5}+\frac{7}{100}=$

$$
\frac{2}{3}-\frac{5}{8}=
$$

$$
2 \frac{1}{4}-\frac{7}{12}
$$

To multiply fractions \qquad
$\frac{3}{5} \cdot \frac{7}{100}=$

$$
\frac{2}{3} \bullet \frac{5}{8}=
$$

$$
6 \frac{1}{8}\left(\frac{9}{11}\right)
$$

To divide fractions \qquad
$\frac{3}{5} \div \frac{7}{100}=\quad \frac{2}{3} \div \frac{5}{8}=\quad 15 \frac{3}{4} \div\left(-\frac{1}{12}\right)$

Find the LCD of:
3 and 4
2 and 7
6 and 8

Multiplying \& Dividing Integers

Adding:

SAME signs: \qquad and \qquad same sign
$6+1=$ \qquad $-3+(-7)=$ \qquad

DIFFERENT signs:
\qquad and keep sign of larger digit.
$-3+8=$ \qquad

$$
1+(-4)=
$$

Subtracting: "Add the opposite"
Change subtraction symbol to \qquad and switch sign of \qquad number, then follow rules for adding.
$5-9=$ \qquad $2-(-3)=$ $-4-1=$ \qquad

Number on top is the \qquad of side numbers

Number on bottom is the \qquad of the side numbers.

Translate the following into math expressions:

+ Add
x increased by 8
The total of m and 9
() Multiply
the product of x and 5 \qquad
6 more than twice x \qquad
triple the difference of 10 and w \qquad

- Subtract/Minus

6 less x
6 less than x

\bullet
 Divide

the quotient of x and 7 \qquad

Absolute Value represents the numerical value of a number without regard to its sign. The symbol for absolute value is two vertical bars, | |. Absolute value can represent the distance on a number line between a number and zero. Since a distance is always positive, the absolute value is always either a positive value or zero. The absolute value of a number is never negative.

Solving equations with absolute value:

a. $|$| | $100 \mid$ | 98 |
| :--- | :--- | :--- |

b. $|6 \quad 11+3|$
c. $9|2|$
d. $5|6| \quad 2$
e. $2 \div|3-4|$
f. $\quad 11|-6|+15$

Square root is a number multiplied by itself two times. There is an invisible " 2 " in the symbol notation.
a. $\sqrt{18}$
b. $\sqrt{9}$
c. $-11-\sqrt{16}$
d. $\sqrt{144}$
e. $\sqrt{3^{2}}$

The solution to the equation $x^{3}=64$ is called the cube root of 64 . The idea is similar to the idea of a square root, except that the value must be cubed (multiplied by itself three times) to become 64 . One way to write the cube root of 64 is using the notation $\sqrt[3]{64}$. Use this information to evaluate each of the following expressions.
$\sqrt[3]{64}$
b. $\sqrt[4]{16}$
c. $\sqrt[3]{-8}$
d. $\sqrt[3]{125}$
e. $\sqrt[3]{27}$
f. $-19+\sqrt[3]{-8}$
\qquad
Unit 1: Functions Toolkit

A relationship between inputs and outputs is called a function if the inputs and outputs behave like a soda machine that is functioning properly.

Output \qquad Input \qquad ALL functions have only \qquad for every \qquad .

Tables

x	-3	-2	-1	0	-2	5	3
y	0	3	5	7	-3	9	13

x	y
-3	8
-2	-2
3	0
4	-5
-5	-2

Graphs

Functions

Families of Relations
There are several "families" of special functions that you will study in this course. One of these is called direct variation (also called direct proportion) which is a linear function. The data you gathered in the "Sign on the Dotted Line" lab (in problem 1-9) is an
 example of a linear relation.

Another function is inverse variation (also called inverse proportion). The data collected in the "Hot Tub Design" lab (in problem 1-9) is an example of inverse variation.

Inverse Variation

You also observed an exponential function. The growth of infected people in the "Local Crisis" (in problem 1-9) was exponential.

In FUNCTIONS OF AMERICA (1-23) you studied equations that create a family of functions called quadratics. The graph of a quadratic function has the shape of a parabola. The exponent of 2 determines this
 curved shape. $\quad y=x^{2}-4 x+5$

Domain and Range

The set (collection) of numbers that can be used for x in a function and still get an output is called the domain of the function. The domain is a description or list of all the possible x-values for the function.
Range: The possible outputs (y -values) is called the range of the function.
Describe the domain and range of each function below.
a.

D:
R:
b.

D:
R:
c.

D:
R:
d.

D:
R:

What value is not part of the domain of the function $f(x)=\frac{1}{x-4}$? Why? Explain completely why it is excluded.

Find the missing inputs or outputs. If no input or output is possible, explain why not. Show all work
3.

4.

Evaluating Expressions

For $f(x)=\sqrt{2 x-8}$, evaluate each of the following.
a. $\quad f(12)$
b. $f(6)$
c. $f(4)$
d. $f(0)$

Order of Operations	
Mathematicians have agreed on an order of operations for simplifying expressions.	
Original expression:	$(10-3 \cdot 2) \cdot 2^{2}-\frac{13-3^{2}}{2}+6$
Circle expressions that are grouped within parentheses or by a fraction bar	(10-3.2) $\cdot 2^{2}-\frac{13-3^{2}}{2}+6$
Simplify within circled terms using the order of operations Evaluate exponents.	(10-3.2) $\cdot 2^{2}-\frac{13-3 \cdot 3}{2}+6$
Multiply or divide from left to right	(10-6) $2^{2}-\frac{13-9}{2}+6$
Combine terms by adding or subtracting from left to right.	(4) $\cdot 2^{2}-\frac{4}{2}+6$
Circle the remaining terms:	$\left(4 \cdot 2^{2}-\left(\frac{4}{2}\right)+(6)\right.$
Simplify within circled terms using the order of operations as above.	$\begin{gathered} (4 \cdot 2 \cdot 2)-\left(\frac{4}{2}\right)+6 \\ 16-2+6 \\ 20 \end{gathered}$
a. $3 \cdot(-8-2)-6 \cdot 3+12$ b. $\frac{-4+6(8-3)}{2 \cdot 3-6 \bullet 8}$	c. $15 \div 3 \cdot 4-(8-6)^{2}+6$

