Mastery Checkpoint 4: Systems of Equations Toolkit

Name

A system of equations is a set of equations with the same variables. Solving a system of equations means finding one or more solutions that make each of the equations in the system true. A solution to a system of equations gives a **point of intersection** (x, y) of the graphs of the equations in the system. There are many methods for solving a system of linear equations such as tables, graphing Equal Values and Substitution method, Elimination method. Furthermore, there are 3 types of solutions.

Tables

Sam and Hector are earning money for football season. Sam has \$20 and is earning two dollars per week. Hector has \$15, but is earning three dollars per week. In how many weeks will they both have the same amount?

Sam	Week (x)				rule
	Money (y)				

Hecto	r Week (x)					rule
	Money (y)					
			Gra	aphing		

One Solution (x,y) "Intersecting Lines"	No Solutions "Parallel Lines"	Many Solutions "Coinciding Lines"
$\begin{array}{ll} \text{Sam} & y = \\ \text{Hector} & y = \end{array}$	y = 3x - 4 y = 3x + 1	y = x - 2 2y = 2x - 4
1 1 1 1 1 90 0 0 0 0 80 0 0 0 70 0 0 0 60 0 0 0 50 0 0 0 40 0 0 0 30 0 0 0 1 2 3 4 5 6 7 8 9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Solution:	Why?	Why?

Equal Values Method

Algebraic method solving for both x and y. Also known as substitution. Sam y = 2x + 202x + y = 5 Put both equations into y = mx + b form. y = x - 1Hector y = 3x + 152x + y = 5y = x - 1y = -2x + 5-2x+5=x-1-3x = -6x = 2now find y by checking in both now find y by checking in both equations equations

$$x = 8 - 2y$$
$$y - 4 = x$$

now find x by checking in both equations

Substitutio	on Method
Substitute the expression of x in second equation. This will create an equation with just one variable, y. Solve for y, then substitute the answer back into both equations to find x.	Substitute the expression of y in second equation Then repeat the substitution method in equation to solve for x . Finally substitute x back into both equations to find y .
x = -3y + 1 $4x - 3y = -11$ $4(-3y + 1) - 3y = -11$ $4(-3y + 1) - 3y = -11$ $-12y + 4 - 3y = -11$ $-15y + 4 = -11$ $-15y = -15$ $y = 1$ now find x by checking in both equations	y = 10 - 2x 3x - 2y = 1 now find <i>y</i> by checking in both equations

Elimination Method

By adding or subtracting the two linear equations in a way that eliminates one of the variables, a single variable equation remains. Solve for it, then substitute the variable back into **both** equations to solve for the other variable.

Variables ready to eliminate	Multiply either by – 1, then eliminate	Multiply top by 3, then eliminate
3x + 2y = 14	5x + 2y = 18	5x + 3y = -6
-3x + 5y = 14	3x + 2y = 10	2x - 9y = 18
Check in both	Check in both	Check in both