\qquad

Mastery Checkpoint 4: Systems of Equations Toolkit

A system of equations is a set of equations with the same variables. Solving a system of equations means finding one or more solutions that make each of the equations in the system true. A solution to a system of equations gives a point of intersection (x, y) of the graphs of the equations in the system. There are many methods for solving a system of linear equations such as tables, graphing Equal Values and Substitution method, Elimination method. Furthermore, there are 3 types of solutions.
 Sam and Hector are earning money for football season. Sam has $\$ 20$ and is earning two dollars per week. Hector has $\$ 15$, but is earning three dollars per week. In how many weeks will they both have the same amount?

| Sam | Week (x) | | | | | | | rule |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Money (y) | | | | | | | |

\square
 Equal Values Method

Algebraic method solving for both x and y . Also known as substitution.

Sam $y=2 x+20$
Hector $\mathrm{y}=3 \mathrm{x}+15$
now find y by checking in both equations
$2 x+y=5$ Put both equations into $y=m x+b$ form. $y=x-1$

$$
\begin{array}{l|l|l}
2 x+y=5 & y=x-1 & y-4=x
\end{array}
$$

$$
y=-2 x+5
$$

$$
-2 x+5=x-1
$$

$$
-3 x=-6
$$

$$
x=2
$$

now find y by checking in both equations
$x=8-2 y$
now find x by checking in both equations
Substitute the expression of x in second eq
will create an equation with just one varia
for y , then substitute the answer back into

equations to find x. | $x=-3 y+1$ | |
| ---: | :--- |
| $4 x-3 y=-11$ | |
| $4(-3 y+1)-3 y$ | $=-11$ |
| $4(12 y+4-3 y$ | $=-11$ |
| $-15 y+4$ | $=-11$ |
| $-15 y$ | $=-15$ |
| y | $=1$ |

now find x by checking in both equations
Substitute the expression of x in second equation. This will create an equation with just one variable, y. Solve for y, then substitute the answer back into both equations to find x .

$$
\begin{aligned}
& x=-3 y+1 \\
& 4 x-3 y=-11
\end{aligned}
$$

$$
\begin{aligned}
& x=-3 y+1 \\
& 4()-3 y=-11 \\
& 4(-3 y+1)-3 y=-11 \\
&-12 y+4-3 y=-11 \\
&-15 y+4=-11 \\
&-15 y=-15 \\
& y=1
\end{aligned}
$$

 equation remains. Solve for it, then substitute the variable back into both equations to solve for the other variable.

Variables ready to eliminate	Multiply either by -1, then eliminate	Multiply top by 3, then eliminate
$3 x+2 y=14$ $-3 x+5 y=14$	$5 x+2 y=18$ $3 x+2 y=10$	$5 x+3 y=-6$ $2 x-9 y=18$
Check in both	Check in both	

