EXAMPLES:

a) $(-4)^{2} \cdot(-4)^{5}$
b) $(2 x)^{3} \cdot(2 x)$
c) $2 x^{4} y^{2} \cdot 3 x^{2} y^{6}$

EXAMPLES:

a) $\left(3^{4}\right)^{2}$
b) $\left[(-x)^{4}\right]^{3}$
c) $\left[(-4)^{2} \cdot(-4)^{3}\right]^{6}$

PRODUCT OF POWERS PROPERTY

When finding the product of powers with the same base, \qquad —.

$$
a^{m} \cdot a^{n}=
$$

POWER OF A POWER PROPERTY

When you raise a power to a power,
keep the \qquad and multiply the \qquad

$$
\left(a^{m}\right)^{n}=
$$

POWER OF A QUOTIENT PROPERTY

When finding the quotient of two algebraic expressions with the same exponent, you can \qquad their bases.

$$
\frac{a^{m}}{b^{m}}=\quad, b \neq 0
$$

EXAMPLES:

a) 5^{-2}
b) $\frac{x^{-7}}{x^{4}}$
c) $9 m \div 3 m^{-2}$

NEGATIVE EXPONENT PROPERTY

When finding negative exponent, take the \qquad of the base and raise it to the positive power.

QUOTIENT OF POWERS PROPERTY
When finding the quotient of powers with the same base, \qquad .

$$
\frac{a^{m}}{a^{n}}=
$$

a) $\frac{2^{9}}{2^{6}}$
b) $\left(\frac{5}{8}\right)^{6} \div\left(\frac{5}{8}\right)$
c) $h^{6} k^{2} \div h^{5} k$

EXAMPLES:

a) $3^{4} \cdot 7^{4}$

When finding the product of two algebraic expressions with the same exponent, you can \qquad b) $\left(-\frac{1}{3}\right)^{5} \cdot\left(-\frac{2}{5}\right)^{5}$
their bases.

$$
a^{m} \cdot b^{m}=
$$

c) $(2 r)^{5} \cdot(7 s)^{5}$

ZERO EXPONENT PROPERTY

Any nonzero number raised to the zero power is equal to \qquad -.

$$
a^{0}=\quad, a \neq 0
$$

c) $\left(a^{4} \div a^{0}\right) \cdot a^{3}$

FRACTIONAL EXPONENTS

A fractional exponent (like m / n), can be broken into two parts:

* a whole number (m) which acts just like a regular exponent (how many times you multiply)
* a fraction ($1 / \mathrm{n}$) which tells you to take the nth root. For example, an exponent of $1 / 2$ means to take the square root. $1 / 3$ means take cube root.

You can simplify using either method below:

$$
\begin{gathered}
x^{\frac{m}{n}}=x^{\left(\frac{1}{n} \times m\right)}=\left(x^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{x})^{m} \\
x^{\frac{m}{n}}=x^{\left(m \times \frac{1}{n}\right)}=\left(x^{m}\right)^{\frac{1}{n}}=\sqrt[n]{x^{m}}
\end{gathered}
$$

