Point-Slope Form

Linear Equations in
 Two Variables

What we Know so far....

Slope Intercept Form
 $y=m x+b$

Where m is the slope and b is the intercept

What is Slope?

The slope of a line is a number, \boldsymbol{m}, which measures its

 steepness.

The New Stuff... Point- Slope Form

Point- Slope form is:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Where m is the slope and $\left(x_{1}, y_{1}\right)$ is the given point

Write the Equation in Point-Slope Form

$$
m=-\frac{1}{3} \text { and }(-1,-6)
$$

Step 1: Plug it in

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& \begin{array}{l}
y+6=-\frac{1}{3}(x+1) \quad \text { Point- Slope Form } \\
\frac{1}{\varepsilon}+x \frac{1}{\varepsilon}-\partial+v \\
y=-\frac{1}{3} x-5 \frac{2}{3} \quad \text { Slope - Intercept Form }
\end{array}
\end{aligned}
$$

A linear equation written in the form

$$
y-y_{1}=m\left(x-x_{1}\right) \text { is in point-slope form. }
$$

The graph of this equation is a line with slope m passing through the point $\left(x_{1}, y_{1}\right)$.

Plot the point, then rise $\&$ run from there....

Example:

The graph of the equation $y-3=-\frac{1}{2}(x-4)$ is a line of slope $m=-\frac{1}{2}$ passing through the point $(4,3)$.

4 8

Using Point-Slope Form

We need the slope and a point: $\quad m=\frac{5}{2}$ and $(2,2)$

					5				
					4				
					3			$(2,2)$	
					2				
					1				
5	-4	-3	-2	-1		2	3	4	
					-1	2			
					-2				
					-4				
					-4				

Plug them into the point-slope form

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right. \\
\text { Point }- \text { Slope Form } \\
y-2=\frac{5}{2}(x-2)
\end{gathered}
$$

Example: Write the point-slope form for the equation of the line through the point $(-2,5)$ with a slope of 3 .

Use the point-slope form, $y-y_{1}=m\left(x-x_{1}\right)$, with $m=3$ and $\left(x_{1}, y_{1}\right)=(-2,5)$.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-5=3(x-(-2)) \quad \text { Let } m=3 \text {, let }\left(x_{1}, y_{1}\right)=(-2,5)
$$

$$
y-5=3(x+2)
$$

Given two points, write the equation of a line in point-slope form $(2,-3)$ and ($4,-2$)

Steps:

1. Find slope
$\frac{-2--3}{4-2}=\frac{-2+3}{2}=\frac{1}{2}$
2. Place a point and the slope in into point slope form

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y--3=\frac{1}{2}(x-2) \\
& y+3=\frac{1}{2}(x-2)
\end{aligned}
$$

3. Point-Slope form

$$
\begin{array}{r}
y+3=\frac{1}{2}(x-2) \\
\begin{array}{l}
\text { Solve for } \mathrm{y} \\
\& \text { get } . .
\end{array}
\end{array}
$$

Slope-intercept form

$$
y=\frac{1}{2} x-4
$$

To write point-slope into slope-intercept:

Simplify using distributive property, then move the constant to the right side \& combine like terms

$$
\begin{aligned}
y-2 & =\frac{5}{2}(x-2) \\
y-2 & =\frac{5}{2} x-5 \\
y & =\frac{5}{2} x-5+2 \\
y & =\frac{5}{2} x-3
\end{aligned}
$$

Or move the constant to the right side, then distribute \& combine like terms

$$
\begin{aligned}
y-2 & =\frac{5}{2}(x-2) \\
y & =\frac{5}{2}(x-2)+2 \\
y & =\frac{5}{2} x-5+2 \\
y & =\frac{5}{2} x-3
\end{aligned}
$$

Example: Write the slope-intercept form for the equation of the line through the points $(4,3)$ and $(-2,5)$.

$$
\begin{aligned}
m=\frac{5-3}{-2-4} & =-\frac{2}{6}=-\frac{1}{3} \\
y-y_{1} & =m\left(x-x_{1}\right)
\end{aligned} \text { Calculate the slope. } \quad \text { Point-slope form } \quad \text { Use } m=-\frac{1}{3} \text { and the point }(4,3) .
$$

Solve for y...

$$
y=-\frac{1}{3} x+\frac{13}{3}
$$

Slope-intercept form

A Challenge

Can you write the equation of a line in point-slope form that passes through $(-3,6)$ and $(1,-2)$

$$
\begin{aligned}
& m=\frac{6+2}{-3-1}=-\frac{8}{4}=-\frac{2}{1} \quad \text { Calculate the slope. } \\
& y-y_{1}=m\left(x-x_{1}\right) \quad \text { Use } m=-2 \text { and the point }(1,-2) . \\
& y+2=-2(x-1) \quad \text { Point-Slope Form }
\end{aligned}
$$

Applications

1. Raymond ordered rose bushes for his back yard. They cost $\$ 15$ each. The shipping cost was $\$ 10$. If his bill was $\$ 85$, how many rose bushes did he order?

- What are the variables (what letters will you use)?
- Write the equation using the variables.
- Solve the equation and answer the question

1. Raymond ordered rose bushes for his back yard. They cost $\$ 15$ each. The shipping cost was $\$ 10$. If his bill was $\$ 85$, how many rose bushes did he order?

- VARIABLES: r (rose bushes) and s (shipping)
- EQUATION: 15 r + s = 85
- SOLVE: $15 r+10=85$

$$
\begin{aligned}
15 r & =75 \\
r & =5
\end{aligned}
$$

Raymond ordered 5 rose bushes
2. The length of a rectangle is 6 inches longer than its width. The perimeter is 36 inches. What are the length and width?

- What are the variables (what letters will you use)?
- Write the equation using the variables.
- Solve the equation and answer the question

2. The length of a rectangle is 6 inches longer than its width. The perimeter is 36 inches. What are the length and width?

- VARIABLES: L (length) and W (width)
- EQUATION: L + W + L + W = 36

$$
\text { and } L=6+W
$$

- SOLVE: $(6+W)+W+(6+W)+W=36$

$$
\begin{gathered}
12+4 W=36 \\
4 W=24 \\
W=6
\end{gathered}
$$

The length is 12 and the width is 6

