Finding the Equation of a Line Given Two Points

Most people when asked, "What is the equation of a line?", will answer, " $y=m x+b "$. This is the equation of a line in what is called slope-intercept form where " m " is the slope and " b " is the y intercept. So, how do you find the equation of a line? There are several different ways that you can find the equation of a line. I find the equation of a line everytime by following the same three steps:

```
Step 1: Find the slope of the line.
Step 2: Use the slope to find the y-intercept.
Step 3: Use steps 1 and 2 to write the answer.
```

I will explain these steps by looking a several examples. Please understand that there are often several different ways to complete each math problem, but I have found through the years that students are most successful when the do problems the same way each and every time they attempt the problem. If you know a different way to find the answer that is great, but I am going to show how to do the problem one way and use the same technique everytime I see this problem.

Example 1: Find the equation of the line passing through the points $(-1,-2)$ and $(2,7)$.
Step 1: Find the slope of the line.
To find the slope of the line passing through these two points we need to use the slope formula:

$$
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{7-(-2)}{2-(-1)}=\frac{9}{3}=3
$$

So the slope of the slope of the line passing through these two points is 3 .
Step 2: Use the slope to find the y-intercept.
Now that we know the slope of the line is 3 we can plug the slope into the equation and we get:

$$
y=3 x+b
$$

Next choose one of the two point to plug in for the values of x and y. It does not matter which one of the two points you choose because you should get the same answer in either case. I generally just choose the first point listed so I don't have to worry about which one I should choose.

$$
\begin{array}{ll}
(-1,-2) \rightarrow-2=3(-1)+b & \text { Multiply to simplify the problem. } \\
-2=-3+b & \text { Solve for } b \text { and you will have the } y \text {-intercept. } \\
b=1 &
\end{array}
$$

Step 3: Write the answer.
Using the slope of 3 and the y-intercept of 1 , the answer is:

$$
y=3 x+1
$$

Example 2: Find the equation of the line passing through the points $(-2,5)$ and $(4,-3)$.
Step 1: Find the slope of the line.
To find the slope of the line passing through these two points we need to use the slope formula:

$$
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{-3-5}{4-(-2)}=-\frac{8}{6}=-\frac{4}{3}
$$

So the slope of the slope of the line passing through these two points is $-4 / 3$.
Step 2: Use the slope to find the y-intercept.
Now that we know the slope of the line is $-4 / 3$ we can plug the slope into the equation and we get:

$$
y=-\frac{4}{3} x+b
$$

Next choose one of the two point to plug in for the values of x and y. It does not matter which one of the two points you choose, you should get the same answer in either case.

$$
\begin{array}{ll}
(-2,5) \rightarrow 5=\left(-\frac{4}{3}\right)(-2)+\mathrm{b} & \begin{array}{l}
\text { Multiply to simplify the problem. } \\
\text { At this point if you are not good with } \\
\text { fractions, multiply the entire problem by } 3
\end{array} \\
5=\frac{8}{3}+\mathrm{b} \rightarrow 3\left(5=\frac{8}{3}+\mathrm{b}\right) & \begin{array}{l}
\text { (the common denominator) and the fractions } \\
\text { will go away. }
\end{array} \\
15=8+3 \mathrm{~b} & \text { Solve for b and you will have the y-intercept. } \\
\mathrm{b}=\frac{7}{3} &
\end{array}
$$

Step 3: Write the answer.
Using the slope of $-4 / 3$ and the y-intercept of $7 / 3$, the answer is:

$$
y=-\frac{4}{3} x+\frac{7}{3}
$$

Example 3: Find the equation of the line passing through the points $(-5,-2)$ and $(1,5)$.
Step 1: Find the slope of the line.
To find the slope of the line passing through these two points we need to use the slope formula:

$$
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{5-(-2)}{1-(-5)}=\frac{7}{6}
$$

So the slope of the slope of the line passing through these two points is $7 / 6$.
Step 2: Use the slope to find the y-intercept.
Now that we know the slope of the line is $7 / 6$ we can plug the slope into the equation and we get:

$$
y=\frac{7}{6} x+b
$$

Next choose one of the two point to plug in for the values of x and y. It does not matter which one of the two points you choose, you should get the same answer in either case.

$$
\begin{array}{ll}
(-5,-2) \rightarrow-2=\left(\frac{7}{6}\right)(-5)+\mathrm{b} & \begin{array}{l}
\text { Multiply to simplify the problem. } \\
-2=-\frac{35}{6}+\mathrm{b} \rightarrow 6\left(-2=-\frac{35}{6}+\mathrm{b}\right)
\end{array} \\
\begin{array}{l}
\text { Multiply the entire problem by } 6 \text { (the } \\
\text { common denominator) and the fractions } \\
\text { will go away. }
\end{array} \\
-12=-35+6 \mathrm{~b} & \begin{array}{l}
\text { Solve for } \mathrm{b} \text { and you will have the } y- \\
\text { intercept. }
\end{array} \\
\mathrm{b}=\frac{23}{6} &
\end{array}
$$

Step 3: Write the answer.
Using the slope of $7 / 6$ and the y-intercept of $23 / 6$, the answer is:

$$
y=\frac{7}{6} x+\frac{23}{6}
$$

Example 4: Find the equation of the line passing through the points $(-4,7)$ and $(3,2)$.
Step 1: Find the slope of the line.
To find the slope of the line passing through these two points we need to use the slope formula:

$$
\mathrm{m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{2-7}{3-(-4)}=-\frac{5}{7}
$$

So the slope of the slope of the line passing through these two points is $-5 / 7$.
Step 2: Use the slope to find the y-intercept.
Now that we know the slope of the line is $-5 / 7$ we can plug the slope into the equation and we get:

$$
y=-\frac{5}{7} x+b
$$

Next choose one of the two point to plug in for the values of x and y. It does not matter which one of the two points you choose, you should get the same answer in either case.

$$
\begin{array}{ll}
(-4,7) \rightarrow 7=\left(-\frac{5}{7}\right)(-4)+\mathrm{b} & \text { Multiply to simplify the problem. } \\
7=\frac{20}{7}+\mathrm{b} \rightarrow 7\left(7=\frac{20}{7}+\mathrm{b}\right) & \begin{array}{l}
\text { Multiply the entire problem by } 7 \text { (the } \\
\text { common denominator) and the fractions } \\
\text { will go away. }
\end{array} \\
49=20+7 \mathrm{~b} & \begin{array}{l}
\text { Solve for b and you will have the y- } \\
\text { intercept. }
\end{array} \\
\mathrm{b}=\frac{29}{7} &
\end{array}
$$

Step 3: Write the answer.
Using the slope of $-5 / 7$ and the y-intercept of $29 / 7$, the answer is:

$$
y=-\frac{5}{7} x+\frac{29}{7}
$$

